M(o)TOR of aging: MTOR as a universal molecular hypothalamus
نویسنده
چکیده
A recent ground-breaking publication described hypothalamus-driven programmatic aging. As a Russian proverb goes "everything new is well-forgotten old". In 1958, Dilman proposed that aging and its related diseases are programmed by the hypothalamus. This theory, supported by beautiful experiments, remained unnoticed just to be re-discovered recently. Yet, it does not explain all manifestations of aging. And would organism age without hypothalamus? Do sensing pathways such as MTOR (mechanistic Target of Rapamycin) and IKK-beta play a role of a "molecular hypothalamus" in every cell? Are hypothalamus-driven alterations simply a part of quasi-programmed aging manifested by hyperfunction and secondary signal-resistance? Here are some answers.
منابع مشابه
TOR-dependent cerebrovascular aging in Alzheimer’s disease
Increasing evidence suggests that vascular dysfunction, a universal feature of aging, mechanistically contributes to the onset and pathogenesis of neurological diseases of aging. It was recently discovered that attenuating activity of the mammalian/mechanistic target of rapamycin (mTOR) extends both lifeand health-span in mice by delaying aging. Here we review current evidence for a critical ro...
متن کاملGrowth and aging: a common molecular mechanism
It is commonly assumed that growth and aging are somehow linked, but the nature of this link has been elusive. Here we review the aging process as a continuation of TOR-driven growth. TOR is absolutely essential for developmental growth, but upon completion of development it causes aging and age-related diseases. Thus, the nutrient-sensing and growth-promoting TOR signaling pathway may provide ...
متن کاملDual mTORC1/C2 inhibitors: gerosuppressors with potential anti-aging effect
Over the past decade, our understanding of the molecular and cellular mechanisms presiding over cellular and tissue decline with aging has greatly advanced. Classical hallmarks of aging cell include increasing levels of reactive oxygen species, DNA damage and senescence entry, which disrupt tissue architecture and function. Tissue dysfunction with aging has been shown to correlate with a cellul...
متن کاملMolecular damage in cancer: an argument for mTOR-driven aging
Despite common belief, accumulation of molecular damage does not play a key role in aging. Still, cancer (an age-related disease) is initiated by molecular damage. Cancer and aging share a lot in common including the activation of the TOR pathway. But the role of molecular damage distinguishes cancer and aging. Furthermore, an analysis of the role of both damage and aging in cancer argues again...
متن کاملGenetic analysis of TOR complex gene variation with human longevity: a nested case-control study of American men of Japanese ancestry.
The mechanistic target of rapamycin (mTOR) pathway is crucial for life span determination in model organisms. The aim of the present study was to test tagging single-nucleotide polymorphisms that captured most of the genetic variation across key TOR complex 1 (TORC1) and TOR complex 2 (TORC2) genes MTOR, RPTOR, and RICTOR and the important downstream effector gene RPS6KA1 for association with h...
متن کامل